* Step 1: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) h(X) -> c(n__d(X)) - Signature: {activate/1,c/1,d/1,f/1,h/1} / {n__d/1,n__f/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,c,d,f,h} and constructors {n__d,n__f} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X)),activate#(X)) d#(X) -> c_5() f#(X) -> c_6() h#(X) -> c_7(c#(n__d(X))) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X)),activate#(X)) d#(X) -> c_5() f#(X) -> c_6() h#(X) -> c_7(c#(n__d(X))) - Weak TRS: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) h(X) -> c(n__d(X)) - Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0 ,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,c#,d#,f#,h#} and constructors {n__d,n__f} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) d(X) -> n__d(X) f(X) -> n__f(X) activate#(X) -> c_1() activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X)),activate#(X)) d#(X) -> c_5() f#(X) -> c_6() h#(X) -> c_7(c#(n__d(X))) * Step 3: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X)),activate#(X)) d#(X) -> c_5() f#(X) -> c_6() h#(X) -> c_7(c#(n__d(X))) - Weak TRS: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) d(X) -> n__d(X) f(X) -> n__f(X) - Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0 ,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,c#,d#,f#,h#} and constructors {n__d,n__f} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:activate#(X) -> c_1() 2:S:activate#(n__d(X)) -> c_2(d#(X)) -->_1 d#(X) -> c_5():5 3:S:activate#(n__f(X)) -> c_3(f#(X)) -->_1 f#(X) -> c_6():6 4:S:c#(X) -> c_4(d#(activate(X)),activate#(X)) -->_1 d#(X) -> c_5():5 -->_2 activate#(n__f(X)) -> c_3(f#(X)):3 -->_2 activate#(n__d(X)) -> c_2(d#(X)):2 -->_2 activate#(X) -> c_1():1 5:S:d#(X) -> c_5() 6:S:f#(X) -> c_6() 7:S:h#(X) -> c_7(c#(n__d(X))) -->_1 c#(X) -> c_4(d#(activate(X)),activate#(X)):4 The dependency graph contains no loops, we remove all dependency pairs. * Step 4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) d(X) -> n__d(X) f(X) -> n__f(X) - Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0 ,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,c#,d#,f#,h#} and constructors {n__d,n__f} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))